13.1

1. For
$$z_1 = -1 + 2i$$
 and $z_2 = 3 + i$, find $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, z_2 , and $\frac{1}{z_2}$.

2. For
$$z_1 = -2 - 3i$$
 and $z_2 = -2 + 5i$, find $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, z_2 , and $\frac{1}{z_2}$.

3. For
$$z_1 = -3 + 3i$$
 and $z_2 = 3 + 6i$, find $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, $\frac{z_1}{z_2}$, and $\frac{1}{z_2}$.

4. For
$$z_1 = +4i$$
 and $z_2 = -3 + 2i$, find $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, $\frac{z_1}{z_2}$, and $\frac{1}{z_2}$.

5. For
$$z_1 = -4 - i$$
 and $z_2 = 2 + 3i$, find $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, z_2 , and $\frac{1}{z_2}$.

6. For
$$z_1 = 5 + 2i$$
 and $z_2 = +i$, find $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, $\frac{z_1}{z_2}$, and $\frac{1}{z_2}$.

7. For a given complex number z = x + iy, find the real and imaginary parts of z^2 and 1/z.

8. Find the modulus of the complex number z = 1 + i.

9. Find the modulus of the complex number z = -2 + 3i.

10. Find the modulus of the complex number z = -9 + i.

11. Find the modulus of the complex number z = -5 + 4i.

12. Find the modulus of the complex number z = -5 - 3i.

13.2

1. Convert the complex number z = -2 + 2i to polar form.

2. Convert the complex number z = -4 - 4i to polar form.

3. Convert the complex number $z = 2\sqrt{3} - 2i$ to polar form.

4. Convert the complex number z = -1 - i to polar form.

5. Convert the complex number z = 4i to polar form.

6. Convert the complex number z = -3i to polar form.

7. Convert the complex number z = -2i to polar form.

8. Convert the complex number z = 2 - 3i to polar form.

9. Convert the complex number z = 1 - i to polar form.

- 10. Convert the complex number z = 1 + i to polar form.
- 11. Convert the complex number $z = 5\sqrt{3} + 5i$ to polar form.
- 12. Convert the complex number $z = -\sqrt{3} + i$ to polar form.
- 13. Convert the complex number z = -1 + i to polar form.
- 14. Convert the complex number z = 2 + 0i to polar form.
- 15. Convert the complex number z = 2 + 3i to polar form.
- 16. Convert the complex number z = 4 + 0i to polar form.
- 17. Convert the complex number z = 2i to polar form.
- 18. Convert the complex number $z = -5\sqrt{3} + 5i$ to polar form.
- 19. Convert the complex number $z = \sqrt{3} i$ to polar form.
- 20. Convert the complex number z = -2 + 0i to polar form.
- 21. Convert the complex number $z = -2\sqrt{3} 2i$ to polar form.
- 22. Convert the complex number z = -4 + 4i to polar form.
- 23. Convert the complex number z = 3 + 3i to polar form.
- 24. Convert the complex number $z=-2-2\sqrt{3}i$ to polar form.
- 25. Convert the complex number $z = -3\sqrt{3} 3i$ to polar form.
- 26. Convert the complex number $z = 3\sqrt{3} 3i$ to polar form.
- 27. Convert the complex number $z = 2 2\sqrt{3}i$ to polar form.
- 28. Convert the complex number $z = 2 + 2\sqrt{3}i$ to polar form.
- 29. Convert the complex number z=-2-3i to polar form.
- 30. Convert the complex number $z = -4\sqrt{3} + 4i$ to polar form.
- 31. Convert the complex number $z = 4\sqrt{3} 4i$ to polar form.
- 32. Convert the complex number $z = \sqrt{3} + i$ to polar form.
- 33. Convert the complex number z = 5 + 5i to polar form.
- 34. Convert the complex number $z = -2 + 2\sqrt{3}i$ to polar form.
- 35. Convert the complex number $z = -\sqrt{3} i$ to polar form.

- 36. Convert the complex number z = -2 + 3i to polar form.
- 37. Convert the complex number z = -3 + 0i to polar form.
- 38. Convert the complex number $z = 2\sqrt{3} + 2i$ to polar form.
- 39. Convert the complex number z = 2 2i to polar form.
- 40. Convert the complex number z = 5 5i to polar form.
- 41. For the complex numbers $z_1 = 2\left(\cos\left(\frac{1}{7}\pi\right) + i\sin\left(\frac{1}{7}\pi\right)\right)$ and $z_2 = 3\left(\cos\left(\frac{2}{5}\pi\right) + i\sin\left(\frac{2}{5}\pi\right)\right)$, compute z_1z_2 , $\frac{z_1}{z_2}$, z_1^2 , and z_2^3 .
- 42. For the complex numbers $z_1 = 2\left(\cos\left(\frac{-2}{7}\pi\right) + i\sin\left(\frac{-2}{7}\pi\right)\right)$ and $z_2 = 2\left(\cos\left(\frac{2}{11}\pi\right) + i\sin\left(\frac{2}{11}\pi\right)\right)$, compute z_1z_2 , z_1^5 , and z_2^4 .
- 43. For the complex numbers $z_1 = 3\left(\cos\left(\frac{-1}{11}\pi\right) + i\sin\left(\frac{-1}{11}\pi\right)\right)$ and $z_2 = 2\left(\cos\left(\frac{5}{13}\pi\right) + i\sin\left(\frac{5}{13}\pi\right)\right)$, compute z_1z_2 , $\frac{z_1}{z_2}$, z_1^2 , and z_2^4 .
- 44. For the complex numbers $z_1 = 2\left(\cos\left(\frac{4}{5}\pi\right) + i\sin\left(\frac{4}{5}\pi\right)\right)$ and $z_2 = \left(\cos\left(\frac{3}{7}\pi\right) + i\sin\left(\frac{3}{7}\pi\right)\right)$, compute z_1z_2 , z_1^4 , and z_2^3 .
- 45. For the complex numbers $z_1 = \left(\cos\left(\frac{-3}{11}\pi\right) + i\sin\left(\frac{-3}{11}\pi\right)\right)$ and $z_2 = \left(\cos\left(\frac{-3}{7}\pi\right) + i\sin\left(\frac{-3}{7}\pi\right)\right)$, compute z_1z_2 , z_1^2 , and z_2^4 .
- 46. Find all cube roots of $z = 2\left(\cos\left(\frac{3}{10}\pi\right) + i\sin\left(\frac{3}{10}\pi\right)\right)$. You may leave your answer in polar form.
- 47. Find all cube roots of $z = 2\left(\cos\left(\frac{3}{11}\pi\right) + i\sin\left(\frac{3}{11}\pi\right)\right)$. You may leave your answer in polar form.
- 48. Find all cube roots of $z = 2\left(\cos\left(\frac{2}{7}\pi\right) + i\sin\left(\frac{2}{7}\pi\right)\right)$. You may leave your answer in polar form.
- 49. Find all cube roots of $z = 3\left(\cos\left(\frac{3}{5}\pi\right) + i\sin\left(\frac{3}{5}\pi\right)\right)$. You may leave your answer in polar form.
- 50. Find all cube roots of $z = 2\left(\cos\left(\frac{3}{7}\pi\right) + i\sin\left(\frac{3}{7}\pi\right)\right)$. You may leave your answer in polar form.
- 51. Find all square roots of z = -1 4i.

- 52. Find all square roots of z = 3 i.
- 53. Find all square roots of z = 1 + 5i.
- 54. Find all square roots of z = 4 + i.
- 55. Find all square roots of z = -5 i.
- 56. Find all square roots of z = 2 5i.
- 57. Find all square roots of z = -2 + 3i.
- 58. Find all square roots of z = -3 + i.
- 59. Find all square roots of z = 2 + 7i.
- 60. Find all square roots of z = 2 + 3i.
- 61. Find all square roots of z = -1 + 5i.
- 62. Find all square roots of z = 2 7i.
- 63. Find all square roots of z = 1 6i.
- 64. Find all square roots of z = -2 + 7i.
- 65. Find all square roots of z = -2 7i.
- 66. Find all complex square roots of $z = 1 + \sqrt{3}i$.
- 67. Find all complex square roots of z = 4 + 4i.
- 68. Find all complex square roots of z = 2 + 2i.
- 69. Find all complex cube roots of $z = 3 + 3\sqrt{3}i$.
- 70. Find all complex cube roots of $z = 1 + \sqrt{3}i$.
- 71. Find all complex square roots of $z = 3\sqrt{3} + 3i$.
- 72. Find all complex cube roots of $z = \sqrt{3} + i$.
- 73. Find all complex cube roots of z = 3 + 3i.
- 74. Find all complex cube roots of $z = 3\sqrt{3} + 3i$.
- 75. Find all complex cube roots of z = 4 + 4i.
- 76. Find all complex square roots of $z = \sqrt{3} + i$.
- 77. Find all complex square roots of $z = 4\sqrt{3} + 4i$.

- 78. Find all complex square roots of z = 3 + 3i.
- 79. Find all complex square roots of $z = 3 + 3\sqrt{3}i$.
- 80. Find the cube roots of unity.
- 81. Find the fourth roots of unity.
- 82. Find the fifth roots of unity.

13.5

- 1. Compute the complex exponential $\exp(z)$ for z = 6 3i.
- 2. Compute the complex exponential $\exp(z)$ for z = -1 + 2i.
- 3. Compute the complex exponential $\exp(z)$ for z = 5 + 11i.
- 4. For the complex number z = x + iy, find the real and imaginary parts of the quantity $\exp(z^2)$ in terms of x and y.
- 5. Find all solutions to the equation

$$\exp(z) = -3 + i.$$

6. Find all solutions to the equation

$$\exp(z) = 3 + i$$
.

7. Find all solutions to the equation

$$\exp(z) = 1 + 2i.$$

8. Find all solutions to the equation

$$\exp(z) = 2 + 3i.$$

9. Find all solutions to the equation

$$\exp(z) = -1 + 3i.$$

10. Find all solutions to the equation

$$\exp(z) = -1 + 2i.$$

13.7

- 1. Compute all values of $\ln (1+2i)$.
- 2. Compute all values of $\ln(-3+i)$.
- 3. Compute all values of $\ln(-2+i)$.
- 4. Compute all values of $\ln (2 + 3i)$.
- 5. Compute all values of $\ln (3 + i)$.
- 6. Compute all values of $\ln(-3+2i)$.
- 7. Find all values of $(-3+3i)^{4i}$ (that's the 4*i* power of -3+3i, not multiplication).
- 8. Find all values of $(-4+4i)^{2i}$ (that's the 2i power of -4+4i, not multiplication).
- 9. Find all values of $(-3+3i)^{2i}$ (that's the 2i power of -3+3i, not multiplication).
- 10. Find all values of $(-4+4i)^{3i}$ (that's the 3i power of -4+4i, not multiplication).
- 11. Find all values of $(-5+5i)^{2i}$ (that's the 2i power of -5+5i, not multiplication).