MTH 362 Supplemental Homework (2.12.20) Tom Bella

13.1
. . 21 1
1. For z1y = =142t and 2o =3+, find 21 + 29, 21 — 29, 2122, —, and —.
Z2 Z2
Solution.
21z = (—142i) + (3+14) = (—1+3) + (2+1)i =2+ 34
=z = (=1+20) = (3+i) = (-1 -3)+ (2— 1)i =4+
2129 = (—1+2i)(3+1) = —3 + 2i% — 1i + 6i = | —5 + bi
A _ o142 (142030 _ 1+ [ 17
2  34+4i  (B3+49)(B3-4) 10 | 10 10
1 1 3—1 3—1 3
— = = = =|— - —1
z 3+i (3+4)(B3-4) 10 |10 10
. . 21 1
2. For zy = =2 —3iand 2o = —2+ 5¢, find 21 + 29, 21 — 22, 2122, —, and —.
%) %)
Solution.
21tz = (=2 = 30) + (—2+5i) = (=2 —2) + (=3 +5)i = —4 + 2i]
2=z =(—2—30) = (—245i) = (=24 2) + (=3 —5)i =| —8i
2129 = (=2 — 3i)(—2 4 5i) = 4 — 15i* — 10i + 6i =
2 _ 23 (-2-3)(-2-5) _—11+16i [ 11 16,
zo  —2+5i  (=2+5i)(-2—-5) 29 | 29 29
11 —2—5i o —2-5i [ 2 5
2z =245 (=245 (-2—-5) 29 | 29 29
. . 21 1
3. For z; = =3+ 3iand 2o =3+ 64, find 21 + 29, 21 — 29, 2129, —, and —.
Z9 29
Solution.

21+ 2 = (=3+30) + (3+6i) = (=3+3) + (3+6)i = | +9i]

21— 2= (=3+3i) — (3+6i) = (-3 —3) + (83— 6)i =6 — 3]
2129 = (=3 + 30)(3 + 6i) = —9 + 18i* — 18i + 9i =| —27 — i |

2 —3+3i  (=3+4+3)(3-6i) 9427 1+§Z_
7  3+6i  (3+6i)(3—6i) 45 |5 5
1 1 3—6i 3 —6i 12

2 3+6i (3+6i)(3—6i) 45 5 15
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4. For z; = +41 and 29 = —3 + 24, find 21 + 20, 21 — 29, 2129, —1, and —.
Z2 %)
Solution.
2+ 2= (+4i) + (—=3+2) = (0—3)+ (4+2)i =] —3+6i
21— 2o = (+4i) — (—3+2i)) = (0+3)+ (4 —2)i=|3+2i
2129 = (+43) (=3 +2i) = 0+ 8i® + 0i — 126 = | -8 — 12i
2 +4i (+4i)(-3—2i)  8—12i |8 12
—_—= = = = — —1
7 —3+42i  (—3+2i)(—3—2i) 13 13 13
11 —3 -2 _3-2 [ 3 2
7  —3+2 (=3+2)(-3-2) 13 | 13 13
. . 21 1
5. For z1 = —4 —1i and 29 =2+ 3¢, find 21 + 20, 21 — 20, 2129, —, and —.
Z2 <2
Solution.

Zt 2= (—4—i)+ (2+43i) = (—4+2) + (-1 +3)i

s—zp=(—4—i)— (2+3i) = (—4—2)+ (-1 -23)i
2120 = (=4 —4)(2+3i) = —8 — 3i% — 120 — 2i =
_ =

n —d—i  (—4-9)(2-3i) —11+10i 110,
— = = | —— —1
2430 (2+30)(2—30) 13 13" 13
11 2-3  2-3 [2 3.
z 2430 (2+3i)(2—-3) 13 |13 13
. . 21 1
6. For z; =5+ 2i and 2z = 414, find 21 + 29, 21 — 29, 2129, —, and —.
%) %)

Solution.
z1+20=0+2)+(+))=(+0)+(2+1)i=|5+3i

21—z =(5+20)— (+i)=(5+0)+(2—1)i=|5+1i

2129 = (54 2i)(+i) = 04 2i% + 5i + 0i =

o+ (H)(=i) 1
11 — —

i e R (e

2 _ 542 _ (5+20)(—i) _ 25

7. For a given complex number 2z = x + iy, find the real and imaginary parts of 2% and 1/z.



MTH 362 Supplemental Homework (2.12.20)

Tom Bella

10.

11.

12.

Solution. To find the real or imaginary part of a quantity, first compute the quantity
and work through it so that there is exactly one ¢ in your answer; that is, write it in the
form x 4 4y. Then pull out = (for the real part) or y (for the imaginary part).

2 = (x+iy)* =2 + 2wyi —y° = (2" —y°) +i (22y)
—_—— ——
Re(22) Im(z2)

21 and ’ Im(z?) = 2zy | (note that i is not in the imaginary part).

1 z T — 1y T — 1y T .
e — = = —1
z 2z (v+ay)(z—idy) x2+y? x2+y? a2+ y?
€ ) . .
So | Re(1 == d|Im(1/z) = —>— | (don’t forget th t .
o|Re(1/z) R and | Im(1/z) Ny (don’t forget the negative sign)

Find the modulus of the complex number z = 1 + 1.

Solution.
o] = |1+ = V12 + 12 =| V3],

Find the modulus of the complex number z = —2 + 3.
Solution.

o] = | — 2+ 3i] = V=22 + 32 = | V3]
Find the modulus of the complex number z = —9 4 7.
Solution.

o= 0+ il = V9T v 12 = VAR
Find the modulus of the complex number z = —5 + 4.
Solution.

2] = | = 5+ 4i] = /=57 + 42 = | V1]

Find the modulus of the complex number z = —5 — 3s.
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Solution.
ol =]~ 5 -3 = 5 1 % =| V1]
13.2
1. Convert the complex number z = —2 + 2¢ to polar form.

Solution. Note that z is in Quadrant 2. From the ratio

y_ 2 _ V22
we see that
. V2 V2
sm0:7, COSQZ—T,

3
and therefore 6 = Zﬁ For the modulus, we compute

|2l = V(=2)2 + (2)2 = V8 = 2v2,

and so the polar form is

z = |z|(cosf +isinf) = 2V2 <cos (31') 4isin (3;7)) .

2. Convert the complex number z = —4 — 47 to polar form.

Solution. Note that z is in Quadrant 3. From the ratio

y -4 V22
r -4 —/2/2,
we see that
. V2 V2
SIHGZ—T, COSG:_?’

5
and therefore 6 = Zﬂ For the modulus, we compute

2] = V(=42 + (-4)2 = V32 = 4V2,

and so the polar form is

z = |z|(cos @ +isinf) =|4v/2 <COS (T) 4 isin (5;)) '

3. Convert the complex number z = 21/3 — 2i to polar form.
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Solution. Note that z is in Quadrant 4. From the ratio

y -2 -1  —1/2

r 23 V3 V32

we see that

V3

sinf = ——, cosf = —,
2 2

s
and therefore 6 = ~% For the modulus, we compute

|2l =/ (2V3)2 + (-2)2 = V16 = 4,

and so the polar form is

z = |z|(cosf +isinf) =|4 (cos (7%) + isin (7%)) .

4. Convert the complex number z = —1 — ¢ to polar form.

Solution. Note that z is in Quadrant 3. From the ratio

y -1 —v2/2
we see that
2 2
sinf = ———, cos&z—g,

5
and therefore 6 = Zﬁ For the modulus, we compute

2l = V(=12 + (1) = V2 = V2,

and so the polar form is

z = |z|(cosf +isinf) = NG) (COS (T) L isin (5;7)) .

5. Convert the complex number z = 41 to polar form.

Solution. Note that z is pure imaginary (real part is zero), and therefore its argument

is always +7 Since 4 >0,0= g
For the modulus, we compute

2] = V(0)? + (4)2 = V16 = 4,

and so the polar form is

z =|z|(cos@ + isinf) =|4 (cos (g) + isin (g)) .
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6. Convert the complex number z = —3i to polar form.

Solution.

is always :i:g. Since -3 <0, 0 = fg.

Note that z is pure imaginary (real part is zero), and therefore its argument

For the modulus, we compute

|2l = V(02 + (=32 = V9 =3,

and so the polar form is

z = |z|(cosf +isinf) =|3 (cos <—g) + isin (—g)) .

. Convert the complex number z = —2¢ to polar form.
Solution. Note that z is pure imaginary (real part is zero), and therefore its argument
is always +7 Since —2 <0,0= —g.

For the modulus, we compute

ol = O+ (27 = Vi =2,

and so the polar form is

z = |z|(cos@ + isinf) =

2o (5) riom ()

. Convert the complex number z = 2 — 3¢ to polar form.

Solution. Note that z is in Quadrant 4. To find the modulus, we consider the ratio
y_=3__3
r 2 2

and so we seek an angle 6 such that the numerator is (a multiple of) sin# and the
denominator is (a multiple of) cosd. There certainly exists such an angle, but it is not
among our memorized values on the unit circle. Therefore, the best that we can do is

3
0 = arctan (—2> .

This value is exact since z is in either Quadrant 1 or 4.
For the modulus, we compute

2] = V(2)2 + (=3)? = V13,
and so the polar form is

z = |z|(cosf 4+ isin®) ‘
9. CODVGIt the com ch)& 1<u111b51 —<:Il —1

TOLT1IT

| e (2)))

= [V13

cos (arctan
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Solution. Note that z is in Quadrant 4. From the ratio

y -1 —V2/2
z 1 V2,
we see that
2
sin9:—7, 0059:7,

and therefore 6 = %r For the modulus, we compute

2l = V(12 + (1)2 = V2= V2,

and so the polar form is

2 = |2|(cosf + isin®) = | V2 (COS (ZT) ©isin (72» |

10. Convert the complex number z = 1 4 ¢ to polar form.

Solution. Note that z is in Quadrant 1. From the ratio

y 1 v2/2
1422,

we see that

2
sin 5 cos 5
and therefore 6 = % For the modulus, we compute

2l = V(12 +(1)2 = V2= V2,

and so the polar form is

z = |z|(cosf + isinf) = \/ﬁ(cos (%) + isin (%)) .

11. Convert the complex number z = 5v/3 + 5i to polar form.

Solution. Note that z is in Quadrant 1. From the ratio

y_ 5 _ 1 _ 172
T 5/3 V3 V32,
we see that
1 3
sin€:§7 cos@zg,

and therefore 6 = % For the modulus, we compute

12| = 1/(5V/3)2 + (5)2 = V100 = 10,

and so the polar form is

z = |z|(cosf +isinf) =|10 (cos (%) + isin (%)) .
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12.

13.

14.

Convert the complex number z = —v/3 + i to polar form.

Solution. Note that z is in Quadrant 2. From the ratio

y_ 1 _ -1 _ L2
r —1V3 V3 V3/2,
we see that
3
sin9:—§, cos@zg,

5
and therefore 6 = % For the modulus, we compute

2] =/ (-1V3)2 + 12 = V4 = 2,

and so the polar form is

z = |z|(cosf +isinf) =|2 <cos (?) tisin (5(?)) .

Convert the complex number z = —1 4 ¢ to polar form.

Solution. Note that z is in Quadrant 2. From the ratio

y_ 1 _ V22
x -1 —/2/2,
we see that
. V2 V2
SIHGZT, COSGZ—T,

3
and therefore 6 = Zﬂ For the modulus, we compute

2l = V(=12 + ()2 = V2= V2,

and so the polar form is

z = |z|(cos + isinf) = V2 (cos (T) Lisin (?Zr>) .

Convert the complex number z = 2 + 0¢ to polar form.

Solution. Note that z is actually a real number (imaginary part is zero), and therefore
its argument is always either 0 or 7. Since 2 > 0, § = 0.
For the modulus, we compute

;

ol = V&P + 07 =

and so the polar form is

z = |z|(cos @ + isinh) 2’2(COS (0) —|—z'sin(0)).‘
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15.

16.

17.

Convert the complex number z = 2 + 3¢ to polar form.

Solution. Note that z is in Quadrant 1. To find the modulus, we consider the ratio

and so we seek an angle 6 such that the numerator is (a multiple of) sinf and the
denominator is (a multiple of) cosd. There certainly exists such an angle, but it is not
among our memorized values on the unit circle. Therefore, the best that we can do is

0 = arctan <3> .
2

This value is exact since z is in either Quadrant 1 or 4.
For the modulus, we compute

|21 = V(2)2 + (3)% = V13,
and so the polar form is

z = |z|(cosf + isinh)

18 e (et (2) ) 0 ot (2)))-

Convert the complex number z = 4 + 0¢ to polar form.

Solution. Note that z is actually a real number (imaginary part is zero), and therefore
its argument is always either 0 or 7. Since 4 > 0, 6 = 0.
For the modulus, we compute

2] = V(4)? +(0)2 = V16 = 4,

and so the polar form is

2 = |2|(cos 0 + isin6) = | 4 (cos (0) + isin (0)) .|

Convert the complex number z = 27 to polar form.

Solution. Note that z is pure imaginary (real part is zero), and therefore its argument
™
is always ii. Since 2 > 0, 6 = 5

For the modulus, we compute

2l = V(02 + (22 = Vi=2,

and so the polar form is

z=|z|(cosf + isinf) =|2 (cos (g) + isin (g)) .




MTH 362 Supplemental Homework (2.12.20)

Tom Bella

18.

19.

20.

Convert the complex number z = —5v/3 + 5i to polar form.

Solution. Note that z is in Quadrant 2. From the ratio

y_ 5 _ -1 _ L2
r —5V/3 V3 V3/2,
we see that
3
sin9:—§, cos@zg,

5
and therefore 6 = % For the modulus, we compute

|z = 1/ (=5V/3)2 + 52 = V100 = 10,

and so the polar form is

z =|z|(cosf +isinf) =| 10 (cos (i?) +isin (5;)) .

Convert the complex number z = v/3 — i to polar form.

Solution. Note that z is in Quadrant 4. From the ratio

y_-1 _-t_-12
: B VB V3L
we see that
3
sinf = —5 cosf = §7
and therefore 6 = —%. For the modulus, we compute

|2l =/ (1V3)2 + (-1)2 = V4 =2,

and so the polar form is

z=|z|(cosf + isinf) =|2 (cos <—%) + isin (—%)) .

Convert the complex number z = —2 4 07 to polar form.

Solution. Note that z is actually a real number (imaginary part is zero), and therefore
its argument is always either 0 or 7. Since —2 < 0, § = 7.
For the modulus, we compute

2l = V(=22 + (02 = Vi =2,

and so the polar form is

z = |z|(cos @ + isin ) 2’2(008(71') + isin (7)) ‘
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21. Convert the complex number z = —24/3 — 2i to polar form.

Solution. Note that z is in Quadrant 3. From the ratio

y__—2 _ 1 _ _-1/2
we see that
3
sinf = —3 cosf = —g,
5T
and therefore 6 = %" For the modulus, we compute

2] = /(—2V3)2 + (—2)2 = VIG = 4

and so the polar form is

z = |z|(cos @ +isinf) =|4 <cos (_?) +isin (_5(;r>> .

22. Convert the complex number z = —4 + 47 to polar form.

Solution. Note that z is in Quadrant 2. From the ratio

y_ 4 _ V2
x -4 —/2/2,
we see that
. V2 V2
SIHGZT, COSGZ—T,

3
and therefore 6 = Zﬂ For the modulus, we compute

2] = V(=42 + (4% = V32 = 4V2,

and so the polar form is

z = |z|(cos @ +isinf) =|4V/2 <COS <?ZT> 4isin <3;r)> '

23. Convert the complex number z = 3 4 3¢ to polar form.

Solution. Note that z is in Quadrant 1. From the ratio

y_3_\/§/2

x 3 /2/2
we see that

2
1 9 = — 9 = -
sin 5 7 COS 5
and therefore = —. For the modulus, we compute

1zl = v/ (3)2 + (3)2 = V18 = 3V/2,

and so the polar form is

2 = |z|(cos@ +isinh) =|3v2 (cos (%) + isin (%)) .
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24. Convert the complex number z = —2 — 2v/3i to polar form.

25.

26.

Solution. Note that z is in Quadrant 3. From the ratio

y _ —2v3 V3 —V3/2

r -2 -1 -1/2"

we see that

3 1
inf = — o
sin 5 cos 5’

4
and therefore 6 = % For the modulus, we compute

2] =/ (—2V3)2 + (—2)2 = VI6 = 4,

and so the polar form is

4 4
z = |z|(cosf +isinf) =|4 (cos (;) + isin <;>> )

Convert the complex number z = —3v/3 — 3i to polar form.

Solution. Note that z is in Quadrant 3. From the ratio

y__ =3 _ 1 _ -1/2
we see that
3
sinf = —3 cosf = —§7
5T
and therefore 6 = ~ % For the modulus, we compute

2] = \/(—3V3)2 + (=3)2 = V36 = 6,

and so the polar form is

z = |z|(cosf + isinf) = |6 <cos <567T> +isin <5g>) '

Convert the complex number z = 3v/3 — 3i to polar form.

Solution. Note that z is in Quadrant 4. From the ratio

y -3 -1 —1)2

33 V3 V32

we see that

V3

sinf = ——, cosf = —,
2 2

T
and therefore 6 = ~% For the modulus, we compute

|z = 1/ (3V/3)2 + (—3)2 = v/36 = 6,

and so the polar form is

z = |z|(cos@ +isind) =|6 (cos (7%) +isin (7%)) .
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27. Convert the complex number z = 2 — 2v/3i to polar form.
Solution. Note that z is in Quadrant 4. From the ratio

y_ 2B VB VA

T 2 T 12

we see that

3 1
51 0 = —— S 0 = —
sin 5 > COS 5
and therefore 6 = —g. For the modulus, we compute

|2l =/ (=2V3)2 + (2)2 = V16 = 4,

and so the polar form is

z =|z|(cosf +isinf) =|4 (cos (—%) + isin (—%)) .

28. Convert the complex number z = 2 + 24/3i to polar form.

Solution. Note that z is in Quadrant 1. From the ratio

y_2V8_ V3 _ V32

T 2 1 127
we see that

3 1
1 e = — 9 = —
sin 5> COS 37
and therefore 6 = —. For the modulus, we compute

2] =1/ (2V3)% + (2)% = V16 = 4,

and so the polar form is

z = |z|(cosf +isinf) =|4 (cos (g) + isin (g)) .

29. Convert the complex number z = —2 — 3: to polar form.
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30.

31.

Solution. Note that z is in Quadrant 3. To find the modulus, we consider the ratio
y -3 3
z -2 2

and so we seek an angle 6 such that the numerator is (a multiple of) sinf and the
denominator is (a multiple of) cosd. There certainly exists such an angle, but it is not
among our memorized values on the unit circle. Therefore, we consider arctan (%) Since
the range of the arctangent function is only in quadrants 1 and 4, we need to add 7 to
this value to get the true argument of z = —2 — 34, so we have

3
0 = arctan (2) + .

Remember this goes outside of the arctangent function. For the modulus, we compute

|2l = V(=2)2 + (=3)2 = V13,

and so the polar form is

z = |V13 (cos (arctan <;) + 7r> +7sin (arctan <g) + 7r>) .

Convert the complex number z = —4+/3 + 4i to polar form.

Solution. Note that z is in Quadrant 2. From the ratio

y_ 4 -1 12

r o —4v3 VB VB2,

we see that /3
3

sin@z—i, C089:77

5
and therefore 6 = % For the modulus, we compute

2] = \/(—4V3)2 + 42 = V64 = 8,

and so the polar form is

z = |z|(cosf +isinf) =|8 (COS (5g> 4 isin <5ér>> .

Convert the complex number z = 44/3 — 4i to polar form.
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32.

33.

Solution. Note that z is in Quadrant 4. From the ratio

y -4 -1  —1/2

c 43 V3 VB2

we see that

V3

sinf = ——, cosf = —,
2 2

s
and therefore 6 = ~% For the modulus, we compute

|2l =/ (4V3)2 + (—4)2 = V64 = 8,

and so the polar form is

z = |z|(cos@ +isind) =|8 (cos (7%) +isin (7%)) .

Convert the complex number z = v/3 + i to polar form.

Solution. Note that z is in Quadrant 1. From the ratio

Yy 1 1 1/2
x

T3 VB VB2

we see that
V3

1
s1 0:7 ‘9:7
sin 5’ cos 5

and therefore 6 = % For the modulus, we compute

|2l =/ (1V3)2 + (1)2 = Vi =2,

and so the polar form is

z=|z|(cosf + isinf) =|2 (cos (%) + isin (%)) .

Convert the complex number z = 5 + 5¢ to polar form.

Solution. Note that z is in Quadrant 1. From the ratio

y_5_ V22
x5 \/2/2,
we see that
2
sinf = —, cosf = —,
2 2

0
and therefore 6 = 1 For the modulus, we compute

2| = V/(5)2 + (5)2 = V50 = 5V2,

and so the polar form is

z = |z|(cos@ +isin ) =|5v/2 (cos (%) + isin (E)) .

4
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34. Convert the complex number z = —2 + 2v/3i to polar form.
Solution. Note that z is in Quadrant 2. From the ratio

y _2v3 V3 _ V32

r -2 -1 -1/2’

we see that

V3 1
sinf) = — 0=—-
sin 5> Cos 5
27
and therefore 6 = 5 For the modulus, we compute

|2l = \/(2V/3)% + (-2)? = V16 = 4,

and so the polar form is

z = |z|(cosf +isinf) = |4 (cos (2;> 4 isin <2;r>> .

35. Convert the complex number z = —/3 — i to polar form.

Solution. Note that z is in Quadrant 3. From the ratio

y_ -1 _ 1 _ -1)2
we see that
3
sinf = —3 cosf = —§7
5T
and therefore 6 = ~ % For the modulus, we compute

o] =/ (-1V3)2 + (—1)2 = Vi =2,

and so the polar form is

z = |z|(cos @ + isinf) = |2 <cos <567T> L isin <5ér>) '

36. Convert the complex number z = —2 + 37 to polar form.
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Solution. Note that z is in Quadrant 2. To find the modulus, we consider the ratio

and so we seek an angle 6 such that the numerator is (a multiple of) sinf and the
denominator is (a multiple of) cosd. There certainly exists such an angle, but it is not

among our memorized values on the unit circle. Therefore, we consider arctan (f%)

Since the range of the arctangent function is only in quadrants 1 and 4, we need to add
7 to this value to get the true argument of z = —2 + 34, so we have

Remember this goes outside of the arctangent function. For the modulus, we compute

|2l = V(=2)2 + (3)% = V13,

and so the polar form is

z = |V13 (cos (arctan (—;’) - 7r> + isin (arctan <—2> +7r>> .

37. Convert the complex number z = —3 + 0¢ to polar form.

Solution. Note that z is actually a real number (imaginary part is zero), and therefore
its argument is always either 0 or 7. Since —3 < 0, § = 7.
For the modulus, we compute

2] = V(=3)2 + (02 = V9 =3,

and so the polar form is

z = |z|(cos 8 + isin§) :’3(COS(7T) + isin (7)) ‘

38. Convert the complex number z = 21/3 + 2i to polar form.

Solution. Note that z is in Quadrant 1. From the ratio

y_ 2 _ 1 _ 12
B VB V3L

we see that
V3

1
sin 5’ cos 5

and therefore 6 = % For the modulus, we compute

2] = \/(2V3)2 + (2)2 = V16 = 4,

and so the polar form is

z = |z|(cosf +isinf) =|4 (cos (%) + isin (%)) .
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39. Convert the complex number z = 2 — 2¢ to polar form.

Solution. Note that z is in Quadrant 4. From the ratio

y_ =2 —V2/2
r 2 V2/2,
we see that
2
sinf = ———, cosf =—,
2 2

7
and therefore 6 = Zﬁ For the modulus, we compute

ol = VP + (27 = VB =2V,

and so the polar form is

z = |z|(cos @ +isinf) =|2v/2 (cos (7:') L isin (7;7)) .

40. Convert the complex number z = 5 — 5i to polar form.

Solution. Note that z is in Quadrant 4. From the ratio

y_ =5 _ —V2/2
x5 \/2/2,
we see that
2
ing=_Y= g= Y=
sin 5 cos 5

7
and therefore 6 = Zﬂ For the modulus, we compute

2| = V/(5)2 + (5)2 = V50 = 5V2,

and so the polar form is

z = |z|(cos @ +isinf) =|5v/2 <COS <7I> 4isin <7;r)> '

41. For the complex numbers z; = 2 (cos (%77) + ¢ sin (%77)) and z9 = 3 (cos (%ﬂ') + ¢ sin (%ﬂ')),

21
compute 2129, —, 2%, and 23.
z2

Solution.
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42. For the complex numbers z; = 2 (COS (_727r) + 4 sin (_7271')) and zo = 2 (cos (%ﬂ) + 4 sin (lw)),

11
<1
compute 2129, —, 27, and 23.
<2

Solution.

43. For the complex numbers z; = 3 (cos (I—llﬂ') + 4 8in (;—llw)) and zp = 2 (cos (%ﬂ') + 4 sin (1—537r)),
compute 212, ?, 22, and 2.

2

Solution.

z1 3. (-1 5 3. 68

— =—cis| —7m— —7 | = =cis | ——=7

zo 2 11 13 2 143
2

44. For the complex numbers z; = 2 (cos (%W) + 4 sin (é

57r)) and zy = (cos (%7?) + 7 sin (%7?)),
comput ZL 4 and 23
pute 2129, = 21, and z5.

Solution.
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45. For the complex numbers z; = (Cos (;—f’ﬂ') + 4 sin (I—fﬂ')) and z9 = (Cos (_737T) + 4 sin (_737r)),

<1
compute 2129, —, 2%, and 23.
<2

Solution.

3 3
46. Find all cube roots of z = 2 (cos (1—07T) + 7sin (1—O7r) ) You may leave your answer

in polar form.

Solution. The formula for the modulus and argument of the cube roots are

. 2k
1z = /T, arg(%)=arg(2)%, k=0,1,2.

So for this case, since z is given in polar form,

S+ 2k
Yz =2, arg (V/z :M, k=0,1,2.
3
Then for each value of k,
k=0 ang(vE) =T - L vz =| va (o &
=0: arg (Vz) = S = 17 z = cis | 757

k=1: aurg({/g):w—23 V= \3/§<cis <2377)>

k=2 arg (Vz) = o— = oom ¥z = €’/§<cis (ggw)>

3 3
47. Find all cube roots of z = 2 (cos <ﬁ7r) + ¢ sin (ﬁﬂ') > You may leave your answer

in polar form.
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Solution.  The formula for the modulus and argument of the cube roots are

arg(z) + 2km

V= E ae(v7) =TT g4
So for this case, since z is given in polar form,
S+ 2k
WE= V3 ag(vr) =TT k=012
Then for each value of k,
k=0: ar (\3/2)—i—i Yz =| V2 (cis L
e EWH T T - 1

%’/T + 27 25 25

k=1 arg (Vz) = 5 = ¥z = {“/Q(cis (3377))

)

@) 5
] S

3 33

Er+ar 4 :
k=2 arg(%):w:lﬁ Yz = \3/§<cis<

2 2
48. Find all cube roots of z = 2 (cos <?7r) + 2sin (?TI‘)) You may leave your answer in

polar form.

Solution.  The formula for the modulus and argument of the cube roots are

arg(z) + 2km

[z = /|2, arg (V/z) = 3 , k=0,1,2.
So for this case, since z is given in polar form,
27+ 2k
VE=93 ag(¥7) =T k=012
Then for each value of k,
27 2 5 2
k=0: arg (V/z) :%:ﬁﬂ Yz = \/§(cis (217r>)
2
1. ooy 7T H2m E 3/7 —| & i LG
k=1: arg (¥/z) = T Yz =|V2 | cis 517"
2r447 10 5 10
k=2 arg (V/2) :%:77r Jz= \/5(615 (77r>)
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3 3
49. Find all cube roots of z = 3 (cos <57T) + i sin (gﬂ')) You may leave your answer in

polar form.

Solution.  The formula for the modulus and argument of the cube roots are

arg(z) + 2km

|\3/2: 3\/|Z7 arg(%):fa k:03172
So for this case, since z is given in polar form,
3
. s+ 2k
‘\3/2:%7 arg(%):%v k:Oa172
Then for each value of k,
S 1 3 1
k=0: arg(%):%:gﬂ Iz = \/§<cis (57r>>

3
—1- o7y _ 5T E2m 13 3/7 —| & o (1B
k=1: arg (V/z) = R Yz =|V3 | cis 57

Sr+dm 2 2
k=2 arg(%):i‘r’ﬂ;— W:Tgﬂ Yz = \3/§(st (1271'))

3 3
50. Find all cube roots of z = 2 (COS <?7T) + 2 sin (?ﬂ')) You may leave your answer in

polar form.
Solution.  The formula for the modulus and argument of the cube roots are
S oy ang(2) + 2k
[z = /|2, arg(ﬁ):f, k=0,1,2.
So for this case, since z is given in polar form,
3+ 2k
z=2 ar %ZM k=0,1,2.

‘ f ) g 3 ) ) )

Then for each value of k,
%ﬂ 1 3 . 1
k=0: arg(%)z?z?ﬂ Yz =|V2 | cis =7

3 2 1 ‘ 1
k=1 arg(%):%—i_ﬂ-:%ﬂ vz = \ﬁ(cis (ZIw))

3
sm 44 31 31
k=2 arg(%) :%:iﬂ' Yz = \3/5(615 (17r>)
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o1.

52.

Find all square roots of z = —1 — 41.

Solution. We first convert to polar coordindates. In Quadrant 3, the polar form of z
is

z = V17 (cis (arctan(4) + 7))
Remember that since arctangent is always in quadrants 1 or 4, we need a shift of +7 to

get the argument for z. The formula for the modulus and argument of the square roots

are
arg(z) + 2km
2 b

Wzl =0zl  arg(Vz) = k=01

So for this case,

tan (4 2k
VE| = V7 = V17, alrg(\/g):arcan( )2+7r+ 7r’ k=01,

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = z= WGE(WM)‘L”))

2

Fol o i W((:is(arctan(;)—kfiﬂ'))

Find all square roots of z = 3 — i.

Solution.  We first convert to polar coordindates. In Quadrant 4, the polar form of z
is
z = V10 (cos (arctan(—1/3)) + isin (arctan(—1/3)))

The formula for the modulus and argument of the square roots are

Vel = Vel arg(Vz) =

arg(z) + 2k k=01
2 ) - ) *

So for this case,

arctan(—1/3) 4+ 2km
2 )

[Vz| = \/V10 = V10, arg (Vz) =

k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = Va0 (o (L))

he1 = Ji— m<cis<arctan(2l/3)+27r)>
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53. Find all square roots of z = 1 + 5.

Solution. We first convert to polar coordindates. In Quadrant 1, the polar form of z
is

z = V26 (cos (arctan(5)) + i sin (arctan(5)))
The formula for the modulus and argument of the square roots are

arg(z) + 2km

VE= VEL e (vE) = MEELEET g
So for this case,

arctan(b) + 2k

k=0,1.
2 9 9

V= VB = V3, g (vE) -

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = z= %(cis(W))

Fo1 o e %(Cis(amtan(;)-i-%r))

54. Find all square roots of 2z = 4 + 1.

Solution.  We first convert to polar coordindates. In Quadrant 1, the polar form of z
is

z = /17 (cos (arctan(1/4)) + i sin (arctan(1/4)))

The formula for the modulus and argument of the square roots are

Vel = Vel arg(Vz) =

arg(z) + 2k k=01
2 ) - ) *

So for this case,

arctan(1/4) + 2k
2 b

VA= YVIT= V17, arg(v3) =

k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = z= W(cis(aml(lﬂ)))

2

Fo1l o vie W(m <arctan(12/4)+27r>>
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95.

56.

Find all square roots of z = —5 — 1.

Solution. We first convert to polar coordindates. In Quadrant 3, the polar form of z
is

z = V26 (cis (arctan(1/5) + m))
Remember that since arctangent is always in quadrants 1 or 4, we need a shift of +7 to

get the argument for z. The formula for the modulus and argument of the square roots

are
arg(z) + 2km

Wzl =+lzl,  arg(vz) = 5 k=0,1.

So for this case,

arctan(1/5) + m + 2km
2 )

IVz| = \/ V26 = V26, arg (v/z) = k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

beo o Jie %(Cis<arctan(1/5)+7r>)

2

Fol o vie %@S (arctan(12/5)—|—37r>>

Find all square roots of z = 2 — 5.

Solution.  We first convert to polar coordindates. In Quadrant 4, the polar form of z
is
z = V29 (cos (arctan(—5/2)) + i sin (arctan(—5/2)))

The formula for the modulus and argument of the square roots are

Vel = Vel arg(Vz) =

arg(z) + 2k k=01
2 ) - ) *

So for this case,

arctan(—5/2) 4+ 2km
2 )

IVz| = \/V29 = V29, arg (Vz) =

k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = Va9 (o (D))

Fol o vie @<Cis<arctan(§/2)+27r>>
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o7.

58.

Find all square roots of z = —2 4 3i.

Solution.
is

We first convert to polar coordindates. In Quadrant 2, the polar form of z

z = /13 (cis (arctan(—3/2) + 7))

Remember that since arctangent is always in quadrants 1 or 4, we need a shift of +7 to
get the argument for z. The formula for the modulus and argument of the square roots

are
Vzl = VI,

arg(z) + 2km

arg (v/z) = 5 k=0,1.

So for this case,

arctan(—3/2) + m + 2kmw
2 )

|\/;|: \/B:%a

arg (v/z) = k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = Ji—|vi (cis (arctan(—23/2) + 7T>)
k‘ —1 N \/2 _ \‘L/E <Cis (arctan(—;’)/Q) + 37('))
Find all square roots of z = —3 4 1.

Solution.  We first convert to polar coordindates. In Quadrant 2, the polar form of z
is
z = /10 (cis (arctan(—1/3) + 7))

Remember that since arctangent is always in quadrants 1 or 4, we need a shift of +x to
get the argument for z. The formula for the modulus and argument of the square roots

are
Vzl = VI,

arg(z) + 2km

arg (v/z) = 5 k=0,1.

So for this case,

|\/E| = \/E: \A‘/ﬁ’ arg (\/}) — arCta‘n(_l/z) +7T+2kﬂ'7

k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = Vz= x‘m<cis<amtan(21/3)+w>)
b=t = vE= Vi (as (T
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59. Find all square roots of z = 2 + 7.

Solution. We first convert to polar coordindates. In Quadrant 1, the polar form of z
is

z = V53 (cos (arctan(7/2)) + i sin (arctan(7/2)))
The formula for the modulus and argument of the square roots are

arg(z) + 2km

VE= VEL e (vE) = MEELEET g
So for this case,

arctan(7/2) + 2km

k=0,1.
2 9 9

WA= VB = VB ang(vE) =

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = = @(Clb<m;(7/2>>)

h=1 = Jie %Gis <arctan(72/2)+27r>>

60. Find all square roots of z = 2 + 3.

Solution.  We first convert to polar coordindates. In Quadrant 1, the polar form of z
is
z = V13 (cos (arctan(3/2)) + i sin (arctan(3/2)))

The formula for the modulus and argument of the square roots are

Vel = Vel arg(Vz) =

arg(z) + 2k k=01
2 ) - ) *

So for this case,

arctan(3/2) + 2km
2 b

VEA = VIB= VI8, arg(vE) =

k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = +z= \‘Vﬁ(cis<3m1(3/2)>)

2

be1 o vil| B <Cis <arctan(32/2) + 27r>>
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61.

62.

Find all square roots of z = —1 + 5i.

Solution. We first convert to polar coordindates. In Quadrant 2, the polar form of z
is

z = V26 (cis (arctan(—5) + 7))
Remember that since arctangent is always in quadrants 1 or 4, we need a shift of +7 to

get the argument for z. The formula for the modulus and argument of the square roots

are
arg(z) + 2km

Wzl =+lzl,  arg(vz) = 5 k=0,1.

So for this case,

arctan(—>5) + m + 2k
2 i

IVz| = \/ V26 = V26, arg (vz) = k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = z=|V26 (cis (amtan(_5) i ”))

2

Fo1l o yie 426(Cis<arctan(—5)+37r)>

2

Find all square roots of z = 2 — 7.

Solution.  We first convert to polar coordindates. In Quadrant 4, the polar form of z
is
z = /53 (cos (arctan(—7/2)) + i sin (arctan(—7/2)))

The formula for the modulus and argument of the square roots are

Vel = Vel arg(Vz) =

arg(z) + 2k k=01
2 ) - ) *

So for this case,

arctan(—7/2) 4+ 2km
2 )

[Vz| =/ V53 = V/53, arg (Vz) =

k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = VE=| 955 (e (D))

Fol o vie %<Cis<arctan(27/2)+27r>>
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63.

64.

Find all square roots of z = 1 — 6z.

Solution. We first convert to polar coordindates. In Quadrant 4, the polar form of z
is

z = V37 (cos (arctan(—6)) + i sin (arctan(—6)))
The formula for the modulus and argument of the square roots are

arg(z) + 2km

VE= VEL e (vE) = MEELEET g
So for this case,

arctan(—6) + 2k

k=0,1.
2 9 9

VA= VBT = VAT, arg(v) -

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

=)

bo1 o e @(Cis<amtan(;6)+2w>>

Find all square roots of z = —2 4 7i.

Solution.  We first convert to polar coordindates. In Quadrant 2, the polar form of z
is

z = /53 (cis (arctan(—7/2) + 7))

Remember that since arctangent is always in quadrants 1 or 4, we need a shift of +x to
get the argument for z. The formula for the modulus and argument of the square roots

are
arg(z) + 2km

Va2l =0zl arg (Vz) = 5 k=0,1.

So for this case,

_arctan(—7/2) + 7 + 2km

IVz| =\/V53= V53,  arg(Vz) 5 :

k=0,1.

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

F—0 o Vi %<Cis<arctan(7/2)+7r>)

2

Fel o yie \4/%<Cis(arctan(—27/2)+37r>)
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65. Find all square roots of z = —2 — Ts.

Solution.  We first convert to polar coordindates. In Quadrant 3, the polar form of z
is

z = V53 (cis (arctan(7/2) + 7))
Remember that since arctangent is always in quadrants 1 or 4, we need a shift of +x to
get the argument for z. The formula for the modulus and argument of the square roots

are
arg(z) + 2km

Vel =Vl arg(ve) = —=——, k=01

So for this case,

arctan(7/2) + w + 2k

E=0,1.
2 ’ 9

IVz| = \/ V53 = V53, arg (Vz) =

Since we cannot evaluate the arctangent here, no further reduction is possible or required.
Our two values become

k=0 = z= Vﬁ(ei%man(;ﬂ)ﬂr»

be1l o villvm <Cis<arctan(72/2)+37r>>

66. Find all complex square roots of z = 1 + v/3i.
Solution. Note that z is in Quadrant 1. Its polar form is
z =|z|(cosf +isinfh) =2 (cos (g) + isin (g)) .
The formula for the modulus and argument of the square roots are

arg(z) + 2kmw

Vel =VIzl,  arg (Ve) = =% ——, k=01
So for this case,
T+ 2k
|\/E|:\/§’ arg (\/g) :%7 k:()al

k=0: = ﬁzx/i(cis(g;())): \/i(cis(

1 vem s (55) < (e ()
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67. Find all complex square roots of z = 4 + 4.
Note that z is in Quadrant 1. Its polar form is

Solution.
2 =|z|(cosf +isin ) = 4v/2 (cos (%) + isin (%)) .

The formula for the modulus and argument of the square roots are
2k
M k=0,1.

|\/E| = \/E7 arg (\/2) = 9 ,

So for this case,
T+ 2k
TR 01,

Vz| = \4vV2 =Vav2,  arg(Vz) =4 5
k=0: = ﬁ-ﬂ%(cis(z—i_o

s 8
1T
2

k=1: = \/E:\/i\“/i<cis(

68. Find all complex square roots of z = 2 + 2i.
Note that z is in Quadrant 1. Its polar form is

Solution.
z = |z|(cosf +isinf) = 2v/2 (cos (%) + isin (g)) .

The formula for the modulus and argument of the square roots are
2k
w k=0,1.

Vel = Vel arg (Vz) = 2 ’
So for this case,
Vel = y/2va = vais, arg(ﬁ)zw’ k=01
o o vem (1)) [ D)

1o (o(i5)[a(e 3)

69. Find all complex cube roots of z = 3 + 3v/3i.
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Solution. Note that z is in Quadrant 1. Its polar form is
. 7r T
z = |z|(cosf +isinf) =6 (cos (5) + isin (g)) .

The formula for the modulus and argument of the cube roots are

. 2
‘\3/2‘: s/|z|7 arg(%):w k=0,1,2.

)

3

So for this case,

Hﬁ':%v
Ek=0: = %z%(cis

w3
+
«l

k=

w3
+
]

1: = %=%<cis< ; )
)

k=2: = \“”/E:\%(cis( ;

70. Find all complex cube roots of z =1 + V3i.

Note that z is in Quadrant 1. Its polar form is
3))

Solution.
z =|z|(cos@ + isinf) = 2 (cos (g) + isin (3

The formula for the modulus and argument of the cube roots are
arg(z) + 2k7r7 k=0.1.2

Vel = /e ang (2) = 2B

So for this case,
T+ 2k
3 T 2km k=0,1,2.

[Vel=V2,  arg(Vz)=*—
e o e ((10)) [ )
£l )z %(ms(?))

)
) [ ()

71. Find all complex square roots of z = 3v/3 + 3i.
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Solution. Note that z is in Quadrant 1. Its polar form is

z =|z|(cosf +isinfh) =6 (cos (%) + isin (%)) .

The formula for the modulus and argument of the square roots are

arg(z) + 2k
2 b

Vel = VIdl,  arg(Vz) =

k=0,1.

So for this case,

_§ T 2km

IVz| = V6, arg (v/z) = k=0,1.

o0 = i (en (120)) <[V (o (2)

p=te = va=ve (o (B0)) =|va (o (B))

72. Find all complex cube roots of z = V3 +i.
Solution. Note that z is in Quadrant 1. Its polar form is
z =|z|(cos@ + isinf) = 2 (cos (%) + isin (%)) .
The formula for the modulus and argument of the cube roots are

arg(z) + 2km

Vel =T, ag(V2) = ——5——, k=012

So for this case,

Val= V3, ang (V) = S

A gy
k=0: = %:\“/5<c1s(6;:)

k=1: = 3/2:\75<cis<

k=2: = \3/5=‘3/§(Cis<g+32g) - \3/5<Cis(2158ﬂ>)

ol
wl| T
—

e}
5
N———

73. Find all complex cube roots of z = 3 + 3u.
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Solution.

So for this case,

74. Find all complex cube roots of z = 3v/3 + 3i.

Note that z is in Quadrant 1. Its polar form is
2 = |z|(cos O +isin @) = 3v/2 (COS (%) + isin (E)) .

The formula for the modulus and argument of the cube roots are
2
arg(z) + 2km k=012

V2l = VI,

k=1: = %:%{ﬁ(m( 3

k=2: = %%%(cis<

Solution.

The formula for the modulus and argument of the cube roots are
arg(z) + 2km k=0.1.2

So for this case,

)

arg (7) = 2B

Vol = fava= B9 amm(va) = T ke
00 = 5= vavE(as (1)) < VYA (s (7))
1) ()
)

s
4

()

NOte ‘ha‘ Z 1S 11 (Quadran‘ 1. I‘S polar fOI"m 1S
.

z = |z|(cos@ +isinf) = 6 (cos (7> —i—isin(

)

Vel = /e ang (2) = 2B

ol
wl| T
°)

75. Find all complex cube roots of z = 4 + 4.
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Solution.

Note that z is in Quadrant 1. Its polar form is
z = |z|[(cosf +isinf) = 42 (cos (%) + isin (%)) .

The formula for the modulus and argument of the cube roots are
2
arg(z) + 2km k=012

Vel = VT, ang(7) = TEELEET

T 4ok
TN 012

)

So for this case,
|92 = \/4V/2 = /472, arg (Vz) = 3
k=0: = %Zﬂ\%(m(:;;o)): W\%(CB(%»
F=1: = %:w{ﬁ@(zz?)): \%I%(Cis(?g))

Z+3li”)> _ e/1€/§<cis (117;))

k=2: = %ﬁ%(cis<

76. Find all complex square roots of z = /3 + 1.
Solution. Note that z is in Quadrant 1. Its polar form is

. ™ T
z =|z|(cos@ + isinf) = 2 (cos (g> + isin (E)) .

The formula for the modulus and argument of the square roots are
2k
arg(z) + 2km k=01,

WA= VL g (vE) = PRI

T+ 2k
6 T2k k=0,1.

So for this case,
VA= VR ams(vE) =

o = e (o (1) [ ()
145))- (e (%)

k=1: = \/52\/§<cis<

77. Find all complex square roots of z = 443 + 4i.
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Solution. Note that z is in Quadrant 1. Its polar form is

z =|z|(cosf +isinh) =8 (cos (%) + isin (%)) .

The formula for the modulus and argument of the square roots are

arg(z) + 2k

Wal = VEL e (vz) = BT g,

So for this case,

_§ T 2km

IVz| = V8, arg (v/z) = k=0,1.

oo = s (e (120) <R (o (3)

p=1e = va=vE (o (B)) = va (an ()

78. Find all complex square roots of z = 3 + 3i.

Solution. Note that z is in Quadrant 1. Its polar form is

2 =|z|(cosf +isin ) = 3v/2 (cos (%) + isin (%)) .

The formula for the modulus and argument of the square roots are

arg(z) + 2km

VA= VL arg(ve) =TIy o
So for this case,
T+ 2k
Vzl = /3v2 = V3V2, arg(ﬁ)z#, k=0,1.
-0 - — 4 : %+O _ 4 T
k=0: = ﬁ—\/§\/§<ms( 5 > —\/5\/5(018(8))

F=1: = ﬁ:ﬁw(cm(igi”)

79. Find all complex square roots of z = 3 + 31/31.
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Solution. Note that z is in Quadrant 1. Its polar form is
z = |z|(cosf +isinf) =6 (cos (g) + isin (g)) .

The formula for the modulus and argument of the square roots are
2k
arg(z) + 2k k=01,

VA= VL ag(vE) = TEEET
arg(ﬁ):ﬂ k=0,1.
k=0: = \/§=¢6<cis(g;ro>>=\/6(cis(

) el

So for this case,

V] = V6,

1: = \/sz/6<cis(

k=

80. Find the cube roots of unity.

Solution.  The formula for complex cube roots is
2k
{2 = V/|z|cis (arg(z);—w) , k=0,1,2.

Roots of unity are the roots of 1, and so using |1| = 1 and arg(1) = 0, this reduces to

the roots of unity formula
2
V1 = cis (?) . k=0,1,2.

Specifying these to each k, we have

k=20
k=1 V1 =|cis (27T)
3
k=2 V1 =|cis (4;)
In rectangular coordinates, these are
V=1, Vi -+ -1V

81. Find the fourth roots of unity.
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Solution.  The formula for complex fourth roots is

2%
Vz = V)7cis <Mj”> . k=0,1,2,3.

Roots of unity are the roots of 1, and so using |1] = 1 and arg(1) = 0, this reduces to
the roots of unity formula

2%
\‘ﬂcis< 4”), k=0,1,2,3.

Specifying these to each k, we have

k=0: V1=|cis(0)]

k=1: V1= cis(%)
k=2 Yi=[ds(m)]
E=3: 41:cis<327T)

In rectangular coordinates, these are

Vi=1, v1i=i, V1i=-1, v1=—i|
82. Find the fifth roots of unity.

Solution.  The formula for complex fifth roots is

5T 2k
2 = /|z|cis (arg(z);—¢r> , k=0,1,2,3,4.

Roots of unity are the roots of 1, and so using |1| = 1 and arg(1) = 0, this reduces to
the roots of unity formula

P
V1 = cis (?) k=0,1,2,3,4.

Specifying these to each k, we have

5 . . 5/7 | e 2
b=0: Vi-[w@] kb=1s Vie|as(T)

k=2: V1= cis<457r) k=3: V1= cis(GW)
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13.5
1. Compute the complex exponential exp(z) for z = 6 — 3i.
Solution. The formula for the complex exponential is
exp(z + iy) = €” (cos(y) + isin(y)) .
Here, x = 6 and y = —3, so we have

exp(6 — 3i) = €5 (cos(—3) + isin(—3)).

2. Compute the complex exponential exp(z) for z = —1 + 2i.
Solution. The formula for the complex exponential is
exp(z + iy) = €” (cos(y) + isin(y)).
Here, x = —1 and y = 2, so we have

exp(—1+2i) = e~ (cos(2) +isin(2)).

3. Compute the complex exponential exp(z) for z =5 + 11i.
Solution. The formula for the complex exponential is
exp(z + iy) = e” (cos(y) + isin(y)).
Here, x =5 and y = 11, so we have

exp(5 + 11i) = €” (cos(11) + isin(11)).

4. For the complex number z = = + iy, find the real and imaginary parts of the quantity
exp(2?) in terms of x and .
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Solution.  We compute

2% = (z+iy)(z +iy) = (2° — y*) + (2zy)i,

and using the formula for the complex exponential
exp(z +iy) = e”(cosy + isiny),

exp(z?) = exp(x? — y?) (cos (22y) + isin (2zy)) .

The real part is the term with no 4, and the imaginary part is the coefficient of i, so they
are, resp.

’exp(sc2 — %) cos (2zy), exp(x? —y?)sin (2zy) ‘

5. Find all solutions to the equation

exp(z) = —3 +i.

Solution. We find a number z such that when the complex exponential of z is
computed, we get a number with modulus and argument the same as —3 + 1.

1
| —3+i =+(-3)2+(1)2=+v10, arg(—3+i)= arctan <—3> +7
(the arctangent is not exact because z is in quadrant 2). From the formula
exp(z +iy) = e (cos(y) + isin(y)) ,

€T

|exp(z)| = e*, and arg(exp(z)) =y +2kmw, ke€Z.
e’ =10, = $:111<\/E),

1 1
y + 2km = arctan (—3) + 7, =y =arctan (—3) + 7+ 2kw, ke€Z,

and so the solutions are

1
z=x+iy= ln(\/ﬁ)%—(arctan(—g)—|—7r+2k‘7r)i, keZ)|

One could also reduce the terms 7 + 2kw, k € Z to (2k + )7, k € Z.
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6. Find all solutions to the equation

exp(z) = 3+ 4.

Solution. We find a number z such that when the complex exponential of z is
computed, we get a number with modulus and argument the same as 3 + .

134+ =+/(3)2+ (1)2 = V10, arg(3+i) = arctan (;)

(the arctangent is exact because z is in quadrant 1). From the formula
exp(z +iy) = e (cos(y) + isin(y)) ,

we have
xr

|exp(z)| = e*, and arg(exp(z)) =y + 2km, k€ Z.

So
e’ =10, = zzln(x/ﬁ),

y + 2km = arctan

TN

1 1
3) = y:arctan<3>+2kﬂ', keZ,

and so the solutions are

1
z=x+ iy = ln(\/ﬁ)+<arctan<3) —&—21<:7T)i7 keZ|

7. Find all solutions to the equation

exp(z) =1+ 2i.

Solution. We find a number z such that when the complex exponential of z is
computed, we get a number with modulus and argument the same as 1 + 2i.

114 2i] =+/(1)2 4 (2)2 =5, arg(l + 2i) = arctan (2)
(the arctangent is exact because z is in quadrant 1). From the formula
exp(z +1y) = e* (cos(y) + isin(y)),

we have
|exp(z)| = €*, and arg(exp(z)) =y + 2km, ke Z.

So
e =5, = x:ln(\/g),

y+ 2km = arctan (2), = y = arctan(2) + 2kw, k€ Z,

and so the solutions are

z=z+iy=|In (\/3) + (arctan (2) + 2km)i, ke Z|
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8. Find all solutions to the equation

exp(z) = 2+ 3i.

Solution. We find a number z such that when the complex exponential of z is
computed, we get a number with modulus and argument the same as 2 + 3i.

3
|24+ 3i] = 1/(2)2+ (3)2 =+13, arg(2+ 3i) = arctan (2>
(the arctangent is exact because z is in quadrant 1). From the formula

exp(z + iy) = e” (cos(y) + isin(y)) ,

we have
xr

|exp(z)| = e*, and arg(exp(z)) =y + 2km, k€ Z.

So
e =13, = zzln(x/ﬁ),

y + 2km = arctan

TN

3 3
3] = y:arctan<2>+2kﬂ', keZ,

and so the solutions are

3
z=x+ iy = ln(\/ﬁ)+<arctan<2) —&—21<:7T)i7 keZ|

9. Find all solutions to the equation

exp(z) = —1 4+ 3i.

Solution. We find a number z such that when the complex exponential of z is
computed, we get a number with modulus and argument the same as —1 + 3:.

| —1+4+3i =+/(-1)2+(3)2=v10, arg(—1+ 3i) =arctan(—3) +
(the arctangent is not exact because z is in quadrant 2). From the formula

exp(z + iy) = €” (cos(y) + isin(y)),
|exp(z)| = €*, and arg(exp(z)) =y + 2km, k€ Z.
e =10, = x:ln(\/ﬁ),
y+ 2km = arctan (—3) + 7, = y=arctan(—3)+ 7+ 2kw, k€ Z,

and so the solutions are

z=x+iy= ln(x/ﬁ)+(arctan(—3)+7r+2k7r)i, keZ|

One could also reduce the terms m + 2k, k € Z to (2k + 1), k € Z.
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10. Find all solutions to the equation

exp(z) = —1 + 2i.

Solution. We find a number z such that when the complex exponential of z is
computed, we get a number with modulus and argument the same as —1 + 2.

| —142i =+/(-1)2+(2)2 =5, arg(—1+2i) = arctan (—2) +7

(the arctangent is not exact because z is in quadrant 2). From the formula

exp(z + iy) = €” (cos(y) + isin(y)),
lexp(z)| = €7, and arg(exp(z)) =y + 2km, k€ Z.
e =5, = x:ln(\/g),
y+ 2km = arctan (—2) + 7, = y=arctan(—2)+ 7+ 2kw, k€Z,

and so the solutions are

z=x+iy = ln(\/5> + (arctan (—2) + 7+ 2km)i, k€ Z|

One could also reduce the terms 7 + 2km, k € Z to (2k + )7, k € Z.

13.7

1.

Compute all values of In (1 + 2i).
Solution.  We first find the polar form of z = 1 + 2i.

11+ 2i| =/(1)2+ (2)2 = V5, arg(l+ 2i) = arctan (2)

(the arctangent is exact because z is in quadrant 1). From the formula
In(re?) = In(r) + 6,

we have

In (1+ 2i) =|In <\/5) + (arctan (2) + 2kr) i, ke€Z|
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2. Compute all values of In (-3 + 7).

Solution.  We first find the polar form of z = —3 + 1.

13+i] =+/(3)2+ (1)2 = V10, arg(—3+i) = arctan (_il% +7r)

(the arctangent is off by 7w because z is in quadrant 2). From the formula
In(re'?) = In(r) + i6,

we have

In(3+1i)=|ln (\/ﬁ) + <arctan <;> +7r+2k7r> i, kel

3. Compute all values of In (-2 + 7).

Solution. We first find the polar form of z = —2 + 3.
1
‘2 + 'L| = (2)2 + (1) = \/57 arg (—2 =+ 7,) = arctan <_2 + 7T'>

(the arctangent is off by 7 because z is in quadrant 2). From the formula
In(re'?) = In(r) + i6,

we have

1
In(2+41i)=|Iln (\/5) + (arctan (—2) +7r+2k7r) i, keZ|

4. Compute all values of In (2 + 37).
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Solution.  We first find the polar form of z = 2 + 3i.

124 3i| = /(2)2+ (3)2 = V13, arg(2+ 3i) = arctan (2)

(the arctangent is exact because z is in quadrant 1). From the formula
In(re?) = In(r) + i6,

we have

In(2+4+3:) =|In (\/ﬁ) + (arctan (2) + 2k;7r> i, keZ|

5. Compute all values of In (3 + 7).

Solution. We first find the polar form of z = 3 + 1.

1
13414 =+/(3)2+ (1)2 =10, arg(3+i) = arctan (3>
(the arctangent is exact because z is in quadrant 1). From the formula
In(re'?) = In(r) + i6,

we have

In(3+1i)=|ln (\/E) + (arctan (;) + 2k‘7r> i, keZ|

6. Compute all values of In (—3 + 21).
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Solution.  We first find the polar form of z = —3 + 2i.

134 2i] =/(3)2+ (2)2 = V13, arg(—3 + 2i) = arctan (g + w>

(the arctangent is off by 7w because z is in quadrant 2). From the formula
In(re'?) = In(r) + i6,

we have

In(3+2i) =|In (V13) + ( arctan 72 + 7+ 2kw )i, k€EZ|
3

7. Find all values of (—3 4 3i)* (that’s the 4i power of —3 + 3i, not multiplication).

Solution.  The formula for general powers is
z¢ = exp(cln(z)).

To find In(z), we compute
3
2] = v/(=3)2+ (3)2 = V18, arg(z) = it 2kw, ke€Z,
(3
In(z) =In (\/ 18) +i (47r + Qkﬂ) , kel

cln(z) = (=3m + 2kw) + 1 (4111 (\/ﬁ)) , kel
Finally,

2¢ = exp(cln(z)) = | exp (=37 + 2km) (cis (4 In \/E)) , keZ.

8. Find all values of (—4 + 44)* (that’s the 2i power of —4 + 4i, not multiplication).
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Solution.

The formula for general powers is

To find In(z), we compute

ol = VAP (07 = V32, ars(z) = om +2kn, ke,

Finally,

z¢ = exp(cln(z)).

In(z) = In (V32) +i (iw + 2k7r) , kel

cln(z) =

2¢ = exp(cln(z))

(—gw-i-?kw) ti (21n (\@)) kel

=|exp (gw + 2k7r> (Cis <2 In \/33)) , k€.

9. Find all values of (—3 4 3i)* (that’s the 2i power of —3 + 3i, not multiplication).

Solution.

The formula for general powers is

To find In(z), we compute

3
ol = VB + (3 = VIS, ang(e) = Sm+ 2%, ke€Z,

Finally,

In(z)

cln(z) =

2¢ = exp(cln(z))

z¢ = exp(cln(z)).

1n(\/ﬁ)+z'(i7r+2lm), keZ.

(—gw-i-?kw) +i (21n (m)) kel

=|exp (:2377 + 2k7r> (cis <2ln \/E)) , k€.
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10. Find all values of (—4 + 4i)* (that’s the 3i power of —4 + 44, not multiplication).

11.

Solution.  The formula for general powers is

z¢ = exp(cln(z)).

To find In(z), we compute
|2l = V/(—4)% + (4)? = V32,
In(z) =In (\/33) +i (iw

cln(z)

Finally,

arg(z) = %7‘(’ +2kn, keZ,

+2kﬂ'), ke Z.

<—Z7r+2k7r) +i (31n (V?E)) . keZ

2¢ = exp(cln(z))

4

exp (—977 + 2k7r> (cis (3 In \/33)) , keZ.

Find all values of (—5 + 5i)* (that’s the

Solution.  The formula for general powers is

2i power of —5 + 57, not multiplication).

2¢ = exp(cln(z)).

To find In(z), we compute
|2l = V/(=5)% + (5)% = V50,
In(z) =In (\/%) +1 (iﬂ'

cln(z)

Finally,

arg(2)

:%7?+2k7r, keZ,

+2kﬂ'), keZ.

<—27r+2k7r) +i (21n (\/%)) kel

2¢ = exp(cln(z))

3
exp (—277 + 2km

) (cis (2111\/%)), kel




