Math 286 Differential Equations Section 1.5 Handout Kate Bella

Existence & Uniqueness Theorem. Suppose f(t, y) is a continuous function on the rectangle $R = \{(t, y) : t \in (a, b), y \in (c, d)\}$. Then for each point (t_0, y_0) in R there exists an $\epsilon > 0$ and a function y(t) defined on $t \in (t_0 - \epsilon, t_0 + \epsilon)$ that solves the IVP

$$\left\{ \begin{array}{l} \displaystyle \frac{dy}{dt} = f(t,y) \\ y(t_0) = y_0 \end{array} \right. \label{eq:generalized_states}$$

If additionally $\frac{\partial f}{\partial y}$ is continuous in R and $y_1(t)$ and $y_2(t)$ are two functions that solve the IVP in some interval $(t_0 - \epsilon, t_0 + \epsilon)$ for some positive number ϵ , then $y_1(t) = y_2(t)$ in that interval.